Bounds on Layer Potentials with Rough Inputs for Higher Order Elliptic Equations
نویسندگان
چکیده
In this paper we establish square-function estimates on the double and single layer potentials with rough inputs for divergence form elliptic operators, of arbitrary even order 2m, with variable t-independent coefficients in the upper half-space.
منابع مشابه
Boundary Layers and Heat Transfer on a Rotating Rough Disk
The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...
متن کاملAnalytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations
An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...
متن کاملQuantitative uniqueness estimates for the general second order elliptic equations
In this paper we study quantitative uniqueness estimates of solutions to general second order elliptic equations with magnetic and electric potentials. We derive lower bounds of decay rate at infinity for any nontrivial solution under some general assumptions. The lower bounds depend on asymptotic behaviors of magnetic and electric potentials. The proof is carried out by the Carleman method and...
متن کاملMulti-level Higher Order Qmc Galerkin Discretization for Affine Parametric Operator Equations
We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [F.Y. Kuo, Ch. Schwab, and I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for...
متن کاملSquare function estimates on layer potentials for higher-order el- liptic equations
In this paper we continue towards the goal of resolving the Dirichlet and Neumann problems for general divergence form higher order elliptic operators with L data. The investigation of the second-order case has spanned the past three decades in the subject, drawing from the field of harmonic analysis and giving back to it many tools, and by now the real coefficient case is relatively well under...
متن کامل